TidyTuesday: Women in the Workforce
Analyzing data for #tidytuesday week of 3/05/2019 (source) Load libraries library(tidyverse) library(scales) library(lubridate) jobs_gender <- read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2019/2019-03-05/jobs_gender.csv") Clean & plot data jobs_gender %>% filter(year == '2016') %>% mutate(male_diff = ((((total_earnings_male/total_earnings)-1)*workers_male)/total_workers), female_diff = (((total_earnings_female/total_earnings)-1)*workers_female)/total_workers) %>% ggplot() + geom_jitter(aes(total_earnings, female_diff), color = 'salmon', alpha = 0.5, size = 2.5) + geom_jitter(aes(total_earnings, male_diff), color = 'steelblue', alpha = 0.5, size = 2.5) + geom_hline(yintercept = 0, color = 'grey54', lty = 'dashed') + facet_wrap(~major_category) + scale_x_continuous(labels = dollar_format(), limits = c(0,200000)) + scale_y_continuous(labels = percent_format(round(1)), limits = c(-0.3,0.3)) + labs(x = "Average Median Earnings", y = "Difference from Average", caption = "Graphic: @eeysirhc\nSource: Bureau of Labor Statistics", title = "2016 Earnings Differences (Weighted) by Job Sector", subtitle = "Blue = Male; Red = Female") + theme_bw() + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.subtitle = element_text(size = 12), legend.position = 'none') ...