TardyThursday: College Tuition, Diversity & Pay
The differences between this unsanctioned #tardythursday and the official #tidytuesday: These will publish on Thursday (obviously) The dataset will come from a completely different week of TidyTuesday For a surprise, I’ll code with either #rstats or python (similar to #makeovermonday) Load modules import pandas as pd import seaborn as sns import matplotlib.pyplot as plt Download and parse data df_raw=pd.read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-03-10/salary_potential.csv") df=df_raw[['state_name', 'early_career_pay', 'mid_career_pay']].groupby('state_name').mean().reset_index() Visualize dataset sns.set(style="darkgrid") plt.figure(figsize=(20,15)) g=sns.regplot(x="early_career_pay", y="mid_career_pay", data=df) for line in range(0,df.shape[0]): g.text(df.early_career_pay[line]+0.01, df.mid_career_pay[line], df.state_name[line], horizontalalignment='left', size='medium', color='black') plt.xlabel("Early Career Pay") plt.ylabel("Mid Career Pay") plt.title("Average Salary Potential by State: Early vs Mid Career", x=0.01, horizontalalignment="left", fontsize=16) plt.figtext(0.9, 0.09, "by: @eeysirhc", horizontalalignment="right") plt.figtext(0.9, 0.08, "Source: TuitionTracker.org", horizontalalignment="right") plt.show() ...